Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration

نویسندگان

  • Huaming Lei
  • Kan Wang
  • Xiaojun Ji
  • Daxiang Cui
چکیده

Magnetic nanoparticles (MNPs) are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR) sensors for quantification of MNPs present in lateral flow strips (LFSs). The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line) while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG) at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This mod...

متن کامل

Spatially modulated tunnel magnetoresistance on the nanoscale.

We investigate the local tunnel magnetoresistance (TMR) effect within a single Co nanoisland using spin-polarized scanning tunneling microscopy. We observe a clear spatial modulation of the TMR ratio with an amplitude of ~20% and a spacing of ~1.3 nm between maxima and minima around the Fermi level. This result can be ascribed to a spatially modulated spin polarization within the Co island due ...

متن کامل

Origin of temperature dependence in tunneling magnetoresistance

– We present detailed measurements of the differential resistance (dV/dI) of stateof-the-art FM/AlOx/FM magnetic tunnel junctions (MTJ) as a function of applied bias and temperature. Temperature effects are particularly significant in physical quantities involving narrow features such as those at low-voltage bias. We show that the temperature evolution of the tunneling characteristics and, in p...

متن کامل

Spin-dependent tunneling in magnetic tunnel junctions

The phenomenon of electron tunneling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunneling in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunneling magnetoresistance (TMR)...

متن کامل

Spin Polarized Current Phenomena in Magnetic Tunnel Junctions a Dissertation Submitted to the Department of Applied Physics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Spin polarized current is of significant importance both scientifically and technologically. Recent advances in film growth and device fabrication in spintronics make possible an entirely new class of spin-based devices. An indispensable element in all these devices is the magnetic tunnel junction (MTJ) which has two ferromagnetic electrodes separated by an insulator barrier of atomic scale. Wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016